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Stabilizing Turing patterns with subdiffusion in systems with low particle numbers
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The role of subdiffusion in the formation of spatial Turing patterns with particle number fluctuations is
studied. It is demonstrated for a generic activator-inhibitor system that for normal diffusion the particle number
fluctuations stabilize the homogenous steady state in a regime where the mean-field analysis already predicts
stable spatial patterns. In contrast, pattern formation is stabilized considerably even for very low particle
numbers when the activator moves subdiffusively while the inhibitor diffuses normally. In particular, this also
holds true when the subdiffusive activator spreads faster than the inhibitor on small time scales. Possible
applications to pattern formation in cell biology are discussed.
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Pattern formation is an ubiquitous phenomenon in natur@osing a singular distribution of resting/binding time$s)
and may be observed on various length and time scales-1/71*®, between periods of free diffusional motion. In
Since the pioneering work of Turind], who gave a crite- fact, subdiffusion has been reported in many areas of re-
rion when the homogenous steady state of a chemical reaéearch, e.g., for intermittent chaotic systefis], solute
tion can be expected to become instable due to diffusiorffansport in porous medigl4], soluble proteins in the
many studies have been devoted to reaction-diffusion modeRucleus15] of living cells, as well as for integral membrane
which are capable of exhibiting spatial, temporal, or spaProteins in cellular organellgs6] and on the plasma mem-
tiotemporal patterns. Depending on the kind of instability ofPrane(17]. L
the steady state, these patterns can be grouped into different AN additional problem arising in the context of pattern
universality classegsee Ref.[2] for review). Popular ex- formation is the applicability of mean-field approaches when
amples for the formation of spatiotemporal patterns are, e.gNly low amounts of particles are involved. Especially in
the famous Belousov-Zhabotinskii reactif8i and the self- ~Piological systems, only a few hundred or thousand particles
organziation of the slime molBictyostelium discoideufd]. ~ May make up the reaction-diffusion system, leading to strong
Besides a deeper understanding of general principles of paparticle number fluctuations which are neglected in the
tern formation, the investigation of reaction-diffusion sys-mean-field description. If and to what extesubdiffusion
tems also has shaped our current view on fundamental cofoediated pattern formation is affected by particle number
cepts in developmental biolod$,6] and cell biology[7,8].  fluctuations is therefore a crucial, yet poorly explored prob-

However, the concept of Turing pattern formation, i.e.,/em. . ) .
destabilizing the homogenous steady state by diffusion, typi- Here, the ability to obtain spatial patterns for low numbers
cally requires strongly varying diffusion constafiy. This  Of particles is investigated for normal diffusion and subdif-
condition is crucial in many applications, in particular with fusion. Using ~a well characterized reaction-diffusion
respect to pattern formation in living matter. For example,(@ctivator-inhibitoj system, it is shown that the ability to
the diffusion coefficients of reaction partners in the cyto-Stabilize spatial patterns in both cases decreases with the par-
plasm of cells may possibly vary by an order of magnitude ficle number. Subdiffusion, however, yields a considerable
however these high ratios of mobilities are almost impossibl&nhancement to form patterns even when the number of par-
to obtain on membranes. This is due to the fact that in thre&icles involved in the reaction is low. This stabilization of
dimensions the Einstein-Stokes equatidakgT/R yields an ~ Pattern fomation is demonstrated to become stronger as the
inverse proportional dependence of the diffusion consiant activator’s. movement becomes more subdiffusive. Even
on the radiusR of the particle, whereas in two dimensiops ~When the subdiffusive spreading of the activator is faster
only depends logarithmically oR [9]. than the inhibitor on short time scales, a stable pattern

A way out of the dilemma, to require strongly varying €merges while this is impossible when invoking normal dif-
diffusion coefficients for pattern formation, could be to im- fusion. Finally, possible applications to pattern formation in
plicate subdiffusional motion, which has so far not been concell biology are discussed. _ _
sidered in the context of pattern formation. Subdiffusion is AS @ model for the formation of spatial Turing patterns,
characterized by the nonlinear growth of the mean squarte Well studied dimensionless Schnakenberg m@ieB] is
displacement of particles, i.e.Ak)>~t%,a<1, and may considered, i.e.,
arise due to obstructed diffusion and/or a continuous time u

random walk CTRW). While obstruction can easily give rise =a—u+vu’+dAu,

to transient subdiffusive motion witk=0.7 below and at N

the percolation threshold.0,11], the degree of anomality in @
the case of a CTRW is tunable in the range §<1 (see a—v:b—vu2+DAv

Ref. [12] for a review on CTRW. This is achieved by im- at '
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This model is obtained when considering a simple trimolecu-a
lar reaction, i.e., particles/molecules and Y derive from T
different source pools{=A, Y=B) and react to build new o1
particles of specieX (2X+Y—3X). Using the law of mass
action and taking, v as the dimensionless concentrations of 2°
X andY, respectively, Eqs(l) are obtained. While the spe- .
cies u can be interpreted as an autocatalytically generatec
activator, species plays the role of an inhibitor. Conse- 2
qguently, the observed patterns foandv are inverse to each
other. For simplicity, the parameteas b, d will be fixed to
a=0.1,b=0.9, andd=1 in the remainder unless stated oth-
erwise. Using these parameters, the steady state of the rea
tion is given byuy=a+b=1 andvy=b/u3=0.9. A linear S0
stability analysis of the mean-field equatiofly for these
parameters shows that the homogenous steady state becorr 2°
instable beyond a bifurcation &t.~8.5. 5
Numerical investigations of Eq$l) were performed on a
one-dimensional lattice witim=100 sites, periodic bound-
ary ConditionS, and a lattice constantx=0.2. The total FIG. 1. (a) Time evolution of the activator Specielsaccording

length of the environment is this= mAx=20. To study the {0 Eas.(1) for a random initial configuration &b =8.5. To high-
evolution of a random initial state, a fourth order Runge_Ilght the emergence of a spatial patteuns scaled at each time step

Kutta scheme with time incrementt=10"* was used. To T=t/At to the interval 0,1] and displayed in gray scale. Using the

include particle number fluctuations, the stochastic rate equqi—lozrrggggn;ﬁgclset ;)(;::set : dre:;rs sgtl:ea:lr??smvgttli}z)ﬁl izszc?t?soe?nlgd(l C!z
tlo_ns g:c.)rrespond.lng to Edl) V\_/ere conS|dereq, e.g.,_hopplng D=8.5, the steady state of E(.) shows a sinusoidal pattern along
of individual particles of specias between neighboring sites

. - 5 . . the one-dimensional lattice of length for the activatoru (thick
occurred with probabilityDAt/Ax“. The simulations were

. ! 0g)ray line, while the corresponding stochastic dynantisisck line
set up in such a way that the mean number of particles ofpr N=2000 andN=5000 particles hardly shows any signs of a

speciesu on average was given by an intedérFor conve-  gspagial pattern.
nience, this numbex was chosen to characterize the system
while one equivalently could choose the total number of parthe strong fluctuations do not allow one to extract a critical
ticles of both species andv. For both the mean-field and valueD* beyond which the homogenous steady state can be
the stochastic dynamics a maximum simulation time.Qf,  assumed to be instable. Therefore, in the following, an alter-
=10° time steps was used, where the steady state had beeative, somewhat more simple and sensitive measure will be
reachedsee Figs. (a—0]. used to determine if a pattern is observed: the excursion of
Before turning to subdiffusion and its effects on patternthe steady state with respect to a homogenous density is
formation, let us first focus on the role of particle numberdetermined for each simulation by the short range correlation
fluctuations in the case of normal diffusion. As anticipated
from the linear stability analysis, the steady state of Efjs.
for D=28.5 already shows a periodic pattern for the mean-
field equationgFigs. 1a,d]. In contrast, usindN=2000 or
N=5000 particles, rather fluctuations around a homogenoullere, (u) is the mean ofu over the entire length of the
steady state, i.e., no stable pattern, are obseivigss. {b-  samplei=1,... mandu;;;=uy is taken fori=m to sat-
d)]. Increasing the number of particles k5000 eventu- isfy the imposed periodic boundary conditions. To avoid ar-
ally leads to the convergence towards the inhomogenouifacts from individual realizations of the initial configura-
steady state of Eqgl). tion, the data foro were averaged over ten random initial
The most straightforward approach to quantify the abilityconditions for allN’s, D’s. For the continuous and differen-
to form a pattern at any given value bfis to monitor the tiable steady state of Eqél), o tends to zero if the steady
time evolution of the leading mode of speciasi.e., the state is homogenous, while it bifurcatesta D ~8.5 and
maximum¢ of the absolute square of the Fourier transformremains positive for the nonhomogenous steady statés at
of u. If the leading mode decay«l{/dt<0), the homog- >D. [Fig. 2(c), full line]. Similarly, o tends to a small num-
enous state is stable, while a growth indicates pattern formaer oy for the homogenous steady state of the corresponding
tion. As can be seen in Fig(&, smooth curves are obtained stochastic dynamics(<D.). However, due to the particle
for ¢ using Egs.(1) with D=8,10,12 which confirm the number fluctuationsg, depends o\ and does not tend to
anticipated stability of the homogenous state and the onset aero as observed for the mean-field equatipRgy. 2(c),
pattern formation, respectively. For the stochastic counterpagymbold. Concomitant to an increase of, for decreasing
(N=2000,5000), however, the curves faf fluctuate N, the onset of pattern formation appears to be shifted to the
strongly and except fo=5000,D =12 do not yield a well right, i.e., o deviates fromo significantly only for values
criterion if a pattern indeed emergdsg. 2(b)]. In particular, D>D,. To highlight this shift, the standard deviatisfo )

o=2 (U= (u)) Ui+ 1= (u)). )
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FIG. 2. (@) The maximum valug of the absolute square of the ~ FIG. 3. () Mean square displacemensX)® of particles for
Fourier transform of the activatar as a function of time steps. ~ normal diffusion @=1) and for various implementations of the
While the decrease of for D<D, indicates the stability of the CTRW («=0.9,0.7,0.5). Dashed lines highlight the anticipated
homogenous state, the increaseifor DD is a sign for pattern  (Subdiffusive behavior Ax)?~t“. The time course of the activator
formation. (b) Same as i@ when including particle number fluc- U USing the stochastic reaction-diffusion equation with)y N
tuations(upper/lower set of curve$i=2000N = 5000, shifted up/ ~=2000 and(c) N=5000 particles in the regime of subdiffusion
down by a factor of 2/8 for better visibilily The strong fluctuations ~ (activator - speciesu—a=0.9, d=1; inhibitor species v—a
impair a decision if the homogenous state has become instablé; 1, D=8.5) shows the emergence of a pattern. These time
except forD =12, N=5000 (lower dashed linewhere pattern for- ~courses and the corresponding steady states for the activatéd)
mation clearly has set irfc) The short range correlation accord- @€ in strong contrast to the normal diffusive c45es. 1b—d]
ing to Eq.(2) shows the anticipated bifurcation Bt~8.5 for Egs. where no traces of pattern formation could be observed.

(2) (full line) The emergence of a spatial pattern is indicatedrby . . . . .
>0 for D>D, . In contrast, the onset of pattern formation is shifted ©f Particles involved in the pattern formation may be fairly

towards higher values db when the particle number fluctuates Small (see Ref[8] for an example and a nice discussion on

(openffilled symbolsN=2000N=5000). This also leads to a fi- that issug In the remainder of the paper, subdiffusion will
nite, but fluctuatingr, with standard deviatios(o) for D<D..  Pe shown to be a means to overcome these limitations.

Dashed lines indicate the valug = o+ 7s(0) from wheres can A convenient way to model subdiffusive motion is the
be expected to significantly reflect stable pattern formatsee text ~ implementation of a CTRW12], where particles take rests
for detail9. (d) The onset valu®* for pattern formation, defined of durationr during their diffusive motion. When the distri-
by the minimalD which fulfills o=0¢*, tends toward®. (dashed bution of resting times decays asymptotically a$7)
line) asN increases. ~17r*l 0<a<1, the asymptotic behavior of the mean
square displacement is characteristic for subdiffusion, i.e.,
is calculated from the intervéd <D and used as a measure (Ax)2~t®. To study the effects of subdiffusion on pattern
for the onset of pattern formation: whenpasses the thresh- formation, a CTRW was implemented where the particles try
old o* =0+ 7s(0yg), this is taken as evidence that patternto perform a diffusive step to the next lattice site when the
formation has become stable. Dashed lines in Fig. ¢how  resting time has elapsed and then dice another restingrtime
this threshold forN=2000 andN=5000. The minimum As can be seen in Fig.(8), the mean square displacement
valueD* fulfilling the conditiono=o™* thus determines the obtained in that way indeed grows anomalously.
onset of pattern formation and is shown as a functioN af Figures 3b—d) show the result when the activator species
Fig. 2(d). BeyondN=10> no pattern could be detected any u moves subdiffusively withw=0.9 (andd=1 for the ran-
more andD* appears to level off, while for largh a con-  dom walk between the restswhile the inhibitor species
vergence oD* towardsD. is observed. diffuses normally with a mobility determined b =8.5.

It is tempting to conclude from these results that patternAlthough the motion of speciasis only slightly anomalous,
formation with few particles and a low ratid/d cannot be a stable pattern emerges even for low particle numbers, in
described by the usual activator-inhibitor systems. Obtainingontrast to the case of ordinary diffusipef. Figs. 1b—d)].
stable patterns requires in the present example a Eateb  Surprisingly, at low particle numbers even a mild subdiffu-
~10 and this ratio will have to increase even further whension stabilizes pattern formation dramatically. In fact, the
particle number fluctuations are taken into considerationrange of values fob where patterns could be observed with
However, on biological membranes, for example, the ratidN=2000 andN=5000 is shifted down tdD*~2.5 [Fig.
D/d~3 typically cannot be overcome without additional 4(a)] which is a major improvement as compared 3
mechanisms which constrain the diffusion. Also, the number=10 in the normal diffusive cadef. Fig. 2a)]. This pattern-
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1 5‘3 7 v spreads normally with=1D=1. Dashed lines highlight the
0 bom oo respective (subjdiffusive spreading.(b) Although the activator
spreads faster on short time scales, still a Turing pattern emerges as
5 steady state.
(6 Cc ot
oo oo Opgo . . . .
1ok o o . o« _ pattern formation when the activator moves subdiffusively
poopo_ Yo .e «®  ° with «= 0.5 andd= 10, while the inhibitor diffuses normally
. o Y o % . with D=1 (Fig. 5). Here, also the shape is very distinct as
05~ 5 "9 e ., * N not only two but many “hot spots” of the activatar are
oo ,° visible. Using normal diffusion, it is almost impossible to
00;5:3:2::::::::::::::::::::::::::::::::; obtain a pattern which is as “spiky” as the one shown in Fig.
) ° : : : 5(b) by simply tuningD/d. Therefore subdiffusion not only
2 4 6 8 10 12 4 p stabilizes the inhomogenous steady state, but also allows the

emergence of patterns which often cannot be obtained by

FIG. 4. Short range correlatian[Eg. (2)] as a function oD for ordinary diffusion.

subdiffusive motion of the activator speciesith (a) «=0.9, (b) g . e .
«=0.7, (¢) a—0.5 (open/filled symbolsN—2000N—5000). De- The stabilization of Turing patterns by subdiffusion, in

spite the particle number fluctuations, the emergence of spatial pa articular for low particle numpers, IS I!kely to be of impor-
terns is shifted towards small valuesfi.e.,D* <D.. This effect ance for Struc_:ture formation in cell bIOIC.ng' For ?’Famp'e’
becomes more and more pronouncedaaslecreases and fow the_ recently discussed model for bact_e_rlal cell dl\_/l$8ﬂ1
<0.7 stable patterns are obtained even fbx1. Dashed lines relles_ on the strongly decreased mobility of two involved
indicate the valuer* = oy + 75(og) (for N=2000, 5000) beyond proteins, when they attach from .the cytoplasm to the bacte-
which o indicates stable patterns. For=0.5, o becomes less well 2l cell wall. Even if these proteins aggregate on the mem-
as a measure for pattern formation as the maxima become velyrane, the diffusion coefficient of about 10 um?/s used in
sharp[see Fig. §) for an examplgand o may even be negative Ref.[8] is extremely low as compared to the typical value
although a pattern has emerged. 1 ,LLmZ/S anticipated for membrane proteift§. Taking into
account that especially membrane proteins have been re-

stabilizing effect of subdiffusion becomes even stron e|ported to exhibit subdiffusive motidri6,17], the model pro-
nizing LIS &V 9 posed in Ref[8] could be extended to employ this feature
when smallere are usedFigs. 4b,0]. In particular, stable

) and thus to better satisfy possible biological constraints, e.g.,
patterns are obtained even fOr~1 whena=<0.7.

S : e obstructed diffusion. Similarly, the formation of membrane
The stabilization of pattern formation by subdiffusive mo- 4, mains; so called rafts, which are crucial for cell signaling

tion of the activator can be understood when recalling thap,,, pe 4 result of subdiffusive stabilization of spatial pat-
the major ingredient for the appearance of Turing instabilig s ‘Moreover, as shown here, even slightly anomalous dif-
ties is a fast spreading of the inhibitor as compared 10 th§gjon, caused for example by obstructed diffusion, can en-
activator [6]. Thus, subdiffusion mimics the results of a (406 3 Turing instability. Thus, steric hindrance due to the
lower diffusion coefficient, and does this also very effec-qyqskeleton in the cytoplasm or decondensed chromatin in
tively at low pa_rtlcle number_s. In fact, the reaction rate be+ o nucleus of living cells may be a means to trigger inho-
tween few particles of speciasandv may be 100 low 10 ogenous steady states. These patterns would change or
allow the reaction to happen fast enough before diffusionanish when the cell reaches another stage of the cell cycle
drives the particles apart. Subdiffusion on the contrary alyhere the obstruction of diffusion is released, e.g., when the

lows the particles to stay longer near each other and therefo@/toskeleton partly disassembles and the chromatin con-
enhances the probability for the reactiee Ref[11] fora  jonses to chromosomes.

detailed investigation which eventually can stabilize pattern
formation. However, the activator does not necessarily need | am grateful to T. Nilsson and T. Kottos for stimulating
to be slower on all time scales. In fact, one can also observeiscussions.
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