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Stabilizing Turing patterns with subdiffusion in systems with low particle numbers
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The role of subdiffusion in the formation of spatial Turing patterns with particle number fluctuations is
studied. It is demonstrated for a generic activator-inhibitor system that for normal diffusion the particle number
fluctuations stabilize the homogenous steady state in a regime where the mean-field analysis already predicts
stable spatial patterns. In contrast, pattern formation is stabilized considerably even for very low particle
numbers when the activator moves subdiffusively while the inhibitor diffuses normally. In particular, this also
holds true when the subdiffusive activator spreads faster than the inhibitor on small time scales. Possible
applications to pattern formation in cell biology are discussed.
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Pattern formation is an ubiquitous phenomenon in nat
and may be observed on various length and time sca
Since the pioneering work of Turing@1#, who gave a crite-
rion when the homogenous steady state of a chemical r
tion can be expected to become instable due to diffus
many studies have been devoted to reaction-diffusion mo
which are capable of exhibiting spatial, temporal, or s
tiotemporal patterns. Depending on the kind of instability
the steady state, these patterns can be grouped into diffe
universality classes~see Ref.@2# for review!. Popular ex-
amples for the formation of spatiotemporal patterns are, e
the famous Belousov-Zhabotinskii reaction@3# and the self-
organziation of the slime moldDictyostelium discoideum@4#.
Besides a deeper understanding of general principles of
tern formation, the investigation of reaction-diffusion sy
tems also has shaped our current view on fundamental
cepts in developmental biology@5,6# and cell biology@7,8#.

However, the concept of Turing pattern formation, i.
destabilizing the homogenous steady state by diffusion, t
cally requires strongly varying diffusion constants@6#. This
condition is crucial in many applications, in particular wi
respect to pattern formation in living matter. For examp
the diffusion coefficients of reaction partners in the cy
plasm of cells may possibly vary by an order of magnitu
however these high ratios of mobilities are almost imposs
to obtain on membranes. This is due to the fact that in th
dimensions the Einstein-Stokes equationD}kBT/R yields an
inverse proportional dependence of the diffusion constanD
on the radiusR of the particle, whereas in two dimensionsD
only depends logarithmically onR @9#.

A way out of the dilemma, to require strongly varyin
diffusion coefficients for pattern formation, could be to im
plicate subdiffusional motion, which has so far not been c
sidered in the context of pattern formation. Subdiffusion
characterized by the nonlinear growth of the mean squ
displacement of particles, i.e., (Dx)2;ta,a,1, and may
arise due to obstructed diffusion and/or a continuous t
random walk~CTRW!. While obstruction can easily give ris
to transient subdiffusive motion witha>0.7 below and at
the percolation threshold@10,11#, the degree of anomality in
the case of a CTRW is tunable in the range 0,a,1 ~see
Ref. @12# for a review on CTRW!. This is achieved by im-
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posing a singular distribution of resting/binding times,p(t)
;1/t11a, between periods of free diffusional motion. I
fact, subdiffusion has been reported in many areas of
search, e.g., for intermittent chaotic systems@13#, solute
transport in porous media@14#, soluble proteins in the
nucleus@15# of living cells, as well as for integral membran
proteins in cellular organelles@16# and on the plasma mem
brane@17#.

An additional problem arising in the context of patte
formation is the applicability of mean-field approaches wh
only low amounts of particles are involved. Especially
biological systems, only a few hundred or thousand partic
may make up the reaction-diffusion system, leading to stro
particle number fluctuations which are neglected in
mean-field description. If and to what extent~sub!diffusion
mediated pattern formation is affected by particle num
fluctuations is therefore a crucial, yet poorly explored pro
lem.

Here, the ability to obtain spatial patterns for low numbe
of particles is investigated for normal diffusion and subd
fusion. Using a well characterized reaction-diffusio
~activator-inhibitor! system, it is shown that the ability to
stabilize spatial patterns in both cases decreases with the
ticle number. Subdiffusion, however, yields a considera
enhancement to form patterns even when the number of
ticles involved in the reaction is low. This stabilization o
pattern fomation is demonstrated to become stronger as
activator’s movement becomes more subdiffusive. Ev
when the subdiffusive spreading of the activator is fas
than the inhibitor on short time scales, a stable patt
emerges while this is impossible when invoking normal d
fusion. Finally, possible applications to pattern formation
cell biology are discussed.

As a model for the formation of spatial Turing pattern
the well studied dimensionless Schnakenberg model@6,18# is
considered, i.e.,
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This model is obtained when considering a simple trimole
lar reaction, i.e., particles/moleculesX and Y derive from
different source pools (X
A, Y
B) and react to build new
particles of speciesX (2X1Y→3X). Using the law of mass
action and takingu, v as the dimensionless concentrations
X andY, respectively, Eqs.~1! are obtained. While the spe
cies u can be interpreted as an autocatalytically genera
activator, speciesv plays the role of an inhibitor. Conse
quently, the observed patterns foru andv are inverse to each
other. For simplicity, the parametersa, b, d will be fixed to
a50.1, b50.9, andd51 in the remainder unless stated ot
erwise. Using these parameters, the steady state of the
tion is given byu05a1b51 andv05b/u0

250.9. A linear
stability analysis of the mean-field equations~1! for these
parameters shows that the homogenous steady state bec
instable beyond a bifurcation atDc'8.5.

Numerical investigations of Eqs.~1! were performed on a
one-dimensional lattice withm5100 sites, periodic bound
ary conditions, and a lattice constantDx50.2. The total
length of the environment is thusL5mDx520. To study the
evolution of a random initial state, a fourth order Rung
Kutta scheme with time incrementDt51024 was used. To
include particle number fluctuations, the stochastic rate eq
tions corresponding to Eq.~1! were considered, e.g., hoppin
of individual particles of speciesv between neighboring site
occurred with probabilityDDt/Dx2. The simulations were
set up in such a way that the mean number of particles
speciesu on average was given by an integerN. For conve-
nience, this numberN was chosen to characterize the syst
while one equivalently could choose the total number of p
ticles of both speciesu and v. For both the mean-field an
the stochastic dynamics a maximum simulation time oftmax
5106 time steps was used, where the steady state had
reached@see Figs. 1~a–c!#.

Before turning to subdiffusion and its effects on patte
formation, let us first focus on the role of particle numb
fluctuations in the case of normal diffusion. As anticipat
from the linear stability analysis, the steady state of Eqs.~1!
for D58.5 already shows a periodic pattern for the me
field equations@Figs. 1~a,d!#. In contrast, usingN52000 or
N55000 particles, rather fluctuations around a homogen
steady state, i.e., no stable pattern, are observed@Figs. 1~b-
d!#. Increasing the number of particles toN@5000 eventu-
ally leads to the convergence towards the inhomogen
steady state of Eqs.~1!.

The most straightforward approach to quantify the abi
to form a pattern at any given value ofD is to monitor the
time evolution of the leading mode of speciesu, i.e., the
maximumz of the absolute square of the Fourier transfo
of u. If the leading mode decays (dz/dt,0), the homog-
enous state is stable, while a growth indicates pattern for
tion. As can be seen in Fig. 2~a!, smooth curves are obtaine
for z using Eqs.~1! with D58,10,12 which confirm the
anticipated stability of the homogenous state and the ons
pattern formation, respectively. For the stochastic counter
(N52000,5000), however, the curves forz fluctuate
strongly and except forN55000,D512 do not yield a well
criterion if a pattern indeed emerges@Fig. 2~b!#. In particular,
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the strong fluctuations do not allow one to extract a criti
valueD* beyond which the homogenous steady state can
assumed to be instable. Therefore, in the following, an al
native, somewhat more simple and sensitive measure wil
used to determine if a pattern is observed: the excursion
the steady state with respect to a homogenous densit
determined for each simulation by the short range correla

s5(
i

~ui2^u&!~ui 112^u&!. ~2!

Here, ^u& is the mean ofu over the entire length of the
sample,i 51, . . . ,m andui 115u1 is taken fori 5m to sat-
isfy the imposed periodic boundary conditions. To avoid
tifacts from individual realizations of the initial configura
tion, the data fors were averaged over ten random initi
conditions for allN’s, D ’s. For the continuous and differen
tiable steady state of Eqs.~1!, s tends to zero if the stead
state is homogenous, while it bifurcates atD5Dc'8.5 and
remains positive for the nonhomogenous steady statesD
.Dc @Fig. 2~c!, full line#. Similarly, s tends to a small num-
bers0 for the homogenous steady state of the correspond
stochastic dynamics (D,Dc). However, due to the particle
number fluctuations,s0 depends onN and does not tend to
zero as observed for the mean-field equations@Fig. 2~c!,
symbols#. Concomitant to an increase ofs0 for decreasing
N, the onset of pattern formation appears to be shifted to
right, i.e., s deviates froms0 significantly only for values
D.Dc . To highlight this shift, the standard deviations(s0)

FIG. 1. ~a! Time evolution of the activator speciesu according
to Eqs.~1! for a random initial configuration atD58.5. To high-
light the emergence of a spatial pattern,u is scaled at each time ste
T5t/Dt to the interval@0,1# and displayed in gray scale. Using th
corresponding stochastic rate equations with~b! N52000 and~c!
N55000 particles instead, no pattern fomation is observed.~d! At
D58.5, the steady state of Eq.~1! shows a sinusoidal pattern alon
the one-dimensional lattice of lengthL for the activatoru ~thick
gray line!, while the corresponding stochastic dynamics~black line!
for N52000 andN55000 particles hardly shows any signs of
spatial pattern.
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is calculated from the intervalD,Dc and used as a measu
for the onset of pattern formation: whens passes the thresh
old s* 5s017s(s0), this is taken as evidence that patte
formation has become stable. Dashed lines in Fig. 2~c! show
this threshold forN52000 andN55000. The minimum
valueD* fulfilling the conditions>s* thus determines the
onset of pattern formation and is shown as a function ofN in
Fig. 2~d!. BeyondN5103 no pattern could be detected an
more andD* appears to level off, while for largeN a con-
vergence ofD* towardsDc is observed.

It is tempting to conclude from these results that patt
formation with few particles and a low ratioD/d cannot be
described by the usual activator-inhibitor systems. Obtain
stable patterns requires in the present example a ratioD/d
;10 and this ratio will have to increase even further wh
particle number fluctuations are taken into considerati
However, on biological membranes, for example, the ra
D/d'3 typically cannot be overcome without addition
mechanisms which constrain the diffusion. Also, the num

FIG. 2. ~a! The maximum valuez of the absolute square of th
Fourier transform of the activatoru as a function of time stepsT.
While the decrease ofz for D,Dc indicates the stability of the
homogenous state, the increase inz for D.Dc is a sign for pattern
formation.~b! Same as in~a! when including particle number fluc
tuations~upper/lower set of curves:N52000/N55000, shifted up/
down by a factor of 2/8 for better visibility!. The strong fluctuations
impair a decision if the homogenous state has become insta
except forD512, N55000 ~lower dashed line! where pattern for-
mation clearly has set in.~c! The short range correlations accord-
ing to Eq.~2! shows the anticipated bifurcation atDc'8.5 for Eqs.
~1! ~full line! The emergence of a spatial pattern is indicated bys
.0 for D.Dc . In contrast, the onset of pattern formation is shift
towards higher values ofD when the particle number fluctuate
~open/filled symbols:N52000/N55000). This also leads to a fi
nite, but fluctuatings0 with standard deviations(s0) for D,Dc .
Dashed lines indicate the values* 5s017s(s0) from wheres can
be expected to significantly reflect stable pattern formation~see text
for details!. ~d! The onset valueD* for pattern formation, defined
by the minimalD which fulfills s>s* , tends towardsDc ~dashed
line! asN increases.
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of particles involved in the pattern formation may be fair
small ~see Ref.@8# for an example and a nice discussion
that issue!. In the remainder of the paper, subdiffusion w
be shown to be a means to overcome these limitations.

A convenient way to model subdiffusive motion is th
implementation of a CTRW@12#, where particles take rest
of durationt during their diffusive motion. When the distri
bution of resting times decays asymptotically asp(t)
;1/ta11, 0,a,1, the asymptotic behavior of the mea
square displacement is characteristic for subdiffusion,
(Dx)2;ta. To study the effects of subdiffusion on patte
formation, a CTRW was implemented where the particles
to perform a diffusive step to the next lattice site when t
resting time has elapsed and then dice another resting timt.
As can be seen in Fig. 3~a!, the mean square displaceme
obtained in that way indeed grows anomalously.

Figures 3~b–d! show the result when the activator speci
u moves subdiffusively witha50.9 ~and d51 for the ran-
dom walk between the rests!, while the inhibitor speciesv
diffuses normally with a mobility determined byD58.5.
Although the motion of speciesu is only slightly anomalous,
a stable pattern emerges even for low particle numbers
contrast to the case of ordinary diffusion@cf. Figs. 1~b–d!#.
Surprisingly, at low particle numbers even a mild subdiff
sion stabilizes pattern formation dramatically. In fact, t
range of values forD where patterns could be observed wi
N52000 andN55000 is shifted down toD* '2.5 @Fig.
4~a!# which is a major improvement as compared toD*
'10 in the normal diffusive case@cf. Fig. 2~a!#. This pattern-

le,

FIG. 3. ~a! Mean square displacement (Dx)2 of particles for
normal diffusion (a51) and for various implementations of th
CTRW (a50.9,0.7,0.5). Dashed lines highlight the anticipat
~sub!diffusive behavior (Dx)2;ta. The time course of the activato
u using the stochastic reaction-diffusion equation with~b! N
52000 and~c! N55000 particles in the regime of subdiffusio
~activator speciesu—a50.9, d51; inhibitor species v—a
51, D58.5) shows the emergence of a pattern. These t
courses and the corresponding steady states for the activatoru in ~d!
are in strong contrast to the normal diffusive case@Figs. 1~b–d!#
where no traces of pattern formation could be observed.
3-3
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stabilizing effect of subdiffusion becomes even stron
when smallera are used@Figs. 4~b,c!#. In particular, stable
patterns are obtained even forD'1 whena<0.7.

The stabilization of pattern formation by subdiffusive m
tion of the activator can be understood when recalling t
the major ingredient for the appearance of Turing instab
ties is a fast spreading of the inhibitor as compared to
activator @6#. Thus, subdiffusion mimics the results of
lower diffusion coefficient, and does this also very effe
tively at low particle numbers. In fact, the reaction rate b
tween few particles of speciesu and v may be too low to
allow the reaction to happen fast enough before diffus
drives the particles apart. Subdiffusion on the contrary
lows the particles to stay longer near each other and there
enhances the probability for the reaction~see Ref.@11# for a
detailed investigation!, which eventually can stabilize patter
formation. However, the activator does not necessarily n
to be slower on all time scales. In fact, one can also obse

FIG. 4. Short range correlations @Eq. ~2!# as a function ofD for
subdiffusive motion of the activator speciesu with ~a! a50.9, ~b!
a50.7, ~c! a50.5 ~open/filled symbols:N52000/N55000). De-
spite the particle number fluctuations, the emergence of spatial
terns is shifted towards small values ofD, i.e.,D* ,Dc . This effect
becomes more and more pronounced asa decreases and fora
<0.7 stable patterns are obtained even forD'1. Dashed lines
indicate the values* 5s017s(s0) ~for N52000, 5000) beyond
which s indicates stable patterns. Fora50.5, s becomes less wel
as a measure for pattern formation as the maxima become
sharp@see Fig. 5~b! for an example# and s may even be negative
although a pattern has emerged.
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pattern formation when the activator moves subdiffusiv
with a50.5 andd510, while the inhibitor diffuses normally
with D51 ~Fig. 5!. Here, also the shape is very distinct
not only two but many ‘‘hot spots’’ of the activatoru are
visible. Using normal diffusion, it is almost impossible
obtain a pattern which is as ‘‘spiky’’ as the one shown in F
5~b! by simply tuningD/d. Therefore subdiffusion not only
stabilizes the inhomogenous steady state, but also allows
emergence of patterns which often cannot be obtained
ordinary diffusion.

The stabilization of Turing patterns by subdiffusion,
particular for low particle numbers, is likely to be of impo
tance for structure formation in cell biology. For examp
the recently discussed model for bacterial cell divison@8#
relies on the strongly decreased mobility of two involv
proteins, when they attach from the cytoplasm to the ba
rial cell wall. Even if these proteins aggregate on the me
brane, the diffusion coefficient of about 1023 mm2/s used in
Ref. @8# is extremely low as compared to the typical val
1 mm2/s anticipated for membrane proteins@9#. Taking into
account that especially membrane proteins have been
ported to exhibit subdiffusive motion@16,17#, the model pro-
posed in Ref.@8# could be extended to employ this featu
and thus to better satisfy possible biological constraints, e
obstructed diffusion. Similarly, the formation of membra
domains, so called rafts, which are crucial for cell signali
may be a result of subdiffusive stabilization of spatial p
terns. Moreover, as shown here, even slightly anomalous
fusion, caused for example by obstructed diffusion, can
force a Turing instability. Thus, steric hindrance due to t
cytoskeleton in the cytoplasm or decondensed chromati
the nucleus of living cells may be a means to trigger inh
mogenous steady states. These patterns would chang
vanish when the cell reaches another stage of the cell c
where the obstruction of diffusion is released, e.g., when
cytoskeleton partly disassembles and the chromatin c
denses to chromosomes.

I am grateful to T. Nilsson and T. Kottos for stimulatin
discussions.

at-
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FIG. 5. ~a! Anomalous mean square displacement obtained fo
CTRW with a50.5,d510 ~activator speciesu), while the inhibitor
v spreads normally witha51,D51. Dashed lines highlight the
respective~sub-!diffusive spreading.~b! Although the activator
spreads faster on short time scales, still a Turing pattern emerg
steady state.
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